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Abstract—A system is described for measuring the parameters characterizing the local state of
fluidization in beds of arbitrary sizes. This system is based on a miniaturized capacitance probe
shaped so as not to disturb the local state of fluidization. Based on a statistical analysis of the signal,
the mean bubble pulse duration, the number of bubbles striking the probe per unit time and the
local mean bubble rise velocity are measured. The latter is measured by using the cross-correlation
technique. From these parameters, further characteristics of the local state of fluidization are
derived, in particular the local mean pierced length of bubbles, the local bubble volume fraction
and the local bubble gas flow.

1. INTRODUCTION

Gas/solid-fluidized beds are characterized by inhomogeneities known as “bubbles”. The
existence of these bubbles is advantageous as they lead to rapid mixing of the solids in the
bed and high heat transfer rates between the bed and heating or cooling surfaces. On the
other hand in the case of a catalytic fluidized bed reactor where the solids in the bed are
catalyst particles, bubble formation causes bypassing of the reaction gas, thus considerably
reducing the yield of the reactor (Rowe 1967).

The size of the bubbles, the mechanisms of bubble formation and growth, the spatial
distribution of the bubbles within the bed and the distribution of the fluidizing gas between
the bubble and dense phases determine the properties of a fluidized bed. An exact knowledge
of the hydrodynamic properties is thus a prerequisite for complete mastery of fluidization
as a process technology. Such knowledge is already available (Hovmand & Davidson 1971)
for the special case of the slugging fluidized bed. However, for the general case of the
bubbling fluidized bed, where bubble sizes are small compared to the bed diameter, the
information is not complete. The reason for this lies in the difficuities associated with
current measuring techniques, which have yielded so far only approximate information
or information of limited applicability regarding the hydrodynamic properties of fluidized
beds.

For example, the measurement of bubble sizes employing photography of bubble
eruptions at the bed surface (Geldart 1970/71; Argyriou, List & Shinnar 1971), is certain
to be inaccurate since restrictive assumptions are necessary to relate bubble diameters to
eruption diameters. The method used by Rowe & Everett (1972a, b, c), of X-raying a bed
cross-section has the advantage that the bubbles are not disturbed by the measuring
technique. However, this method is limited by two factors. Firstly, the bed dimension is
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limited in the direction of ray transmission to about 30 cm by the availability of radiation
sources. Secondly, only relatively low fluidizing velocities may be investigated since at
higher bubble concentrations individual bubbles may no longer be distinguished clearly.
Measurements carried out on two-dimensional beds are only of limited applicability in
this connection, although such experiments have yielded valuable insights into individual
phenomena such as bubble coalescence. Such data, however, requires amplification and
corroboration by corresponding experiments in three-dimensional beds, as has already been
pointed out by Grace & Harrison (1968) as well as by Rowe & Everett (1972b).

The measurement of the local hydrodynamic properties in three-dimensional fluidized
beds of arbitrary dimensions is possible with capacitive (Morse & Ballou 1951; Bakker
1958; Fukuda, Asaki & Kondo 1967; Kunii, Yoshida & Hiraki 1967; Geldart & Kelsey
1972), optical (Yasui & Johanson 1958; Whitehead & Young 1967), and conductivity
probes (Park et al. 1969). None of these has gained general acceptance. In most cases this
was due to the shapes of the probes which caused destruction of the rising bubbles rather
than the determination of the local state of fluidization. Further defects were often due to
the too inaccurate treatment and interpretation of the electrical signals as well as the fact
that parameters such as bubble frequency or average bubble length are, by themselves,
insufficient to draw useful conclusions.

The first goal of the investigations was the development of a probe suitable for local
measurements, with a minimum disturbance to the state of fluidization. The second aim
was to develop measurement and evaluation techniques to allow measurement of quantities
that characterize the local state of fluidization. Such quantities are the gas flow passing
as bubbles, the bubble volume fraction, the mean pierced length of a bubble and the mean
bubble rise velocity—all obtained as local values.

Bubble development is characterized by its statistical nature, i.e. bubbles rise at random
times and proceed to grow by random coalescence. Therefore, the probe registers a stochastic
phenomenon and it is necessary that the signal obtained be interpreted stochastically and
be analysed with appropriate statistical methods.

Because measuring techniques employing probes have to date repeatedly raised funda-
mental doubts as to their utility (Argyriou, List & Shinnar 1971; Rowe 1971; Lockett &
Harrison 1967; Rowe & Partridge 1965) Part I of this publication presents in detail
the development of such a technique. In Part II the application of the technique to the
investigation of the spatial distribution of bubbles in a fluidized bed follows.

2. DEVELOPMENT OF THE PROBE
A probe suitable for detection of local variations of porosity with time should:

{(a) disturb the state of fluidization as little as possible;

(b) measure local variables;

(c) detect rapid variations in porosity;

(d) possess adequate mechanical strength;

{e) be capable of relocation within the bed, i.e. it should not be fixed at some position;
(f) be compatible with the solids normally encountered in fluidization.
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The capacitance probe shown in figure 1 is most compatible with the above require-
ments, where the capacitor is part of a high frequency oscillator circuit. The temporal
variation of the porosity £(t) at the capacitor causes a change in the capacitance which in
turn results in a proportional d.c. voitage U(z). A reactance converter changes the frequency
in the oscillator circuit.

The plate capacitors used by a number of authors such as Morse & Ballou (1951),
Bakker (1958), Kunii, Yoshida & Hiraki (1967) and Geldart & Kelsey (1972) are unsuited
for exact measurements since their presence significantly changes the local state of fluidiza-
tion. This has been demonstrated by experiments of the authors described below in detail.

Every object inserted in a fluidized bed disrupts the state of fluidization in its vicinity
in some way. The extent of the disturbance depends on the shape and size of the object.
Thus, the aim of the development of a suitable probe must be to choose a shape and size
to minimize such disturbances. Considerations of this kind led to the development of the
needle probe shown in figure 1. The protruding needle forms one pole, while the enclosing
metal tube forms the other pole of the capacitor. To investigate the disturbance of the probe
on the state of fluidization, the following experimental set-up was used: in a 10-cm dia.
bed of glass spheres (mean particle dia. of 180 um) fiuidized by air at a superficial velocity
of 11.7 cm/sec, a needle probe was mounted in the center of the tube at a height of 42 cm
above the distributor plate. The power spectral density of the probe signal was measured
with an ISAC-correlator (Noratom A/S, Norway) with only one probe. The measurement
was repeated with a second needle probe mounted 3 cm below the first one. The presence
of the lower needle probe did not noticeably alter the shape of the power spectral density
function of the upper probe signal. On the other hand, when the lower needle probe was
replaced by a plate capacitor with the same dimensions as used by Bakker (1958) the power
spectral density changed considerably, indicating that the local state of fluidization was
changed by the presence of the plate capacitor. It was thus concluded that a needle probe
has no detectable effect on the state of fluidization in its vicinity. This is in agreement with
the observations of Rowe & Everett (1972a), where single vertical rods of 6.3 and 3.15mm
dia. had no observable effect on the bubble pattern in freely bubbling beds.
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Figure 1. Bubble measurement with capacitive probes. A plate capacitor of the dimensions shown was used by
Bakker (1958).
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Figure 2. Probe signal when the probe is hit by a rising bubble.

In figure 2 the signal U(r) is shown versus the time for the case when a bubble strikes a
probe of short needle length /; as compared to the bubble dimensions. The bubble generates
an electric pulse of duration t,, which is proportional to the pierced length, I:

I=uv,-1, (1]

where v, is the rise velocity of the bubble.
The expression

ty = lg/vy (2]

for the time of rise of the pulse is justified by an experiment in which the bubble’s approach
to the probe was simulated in the following way. The probe was slowly dipped into a liquid
(cyclohexane) while the output U of the reactance converter was registered. The result is
depicted in figure 3. Although the electric field of the needle capacitor passes to infinity,
93 per cent of the total signal amplitude is achieved during the submergence of the probe
needle. It is significant that the variation of the voltage is linear during the submergence,
except for the liquid adhesion effects brought about by the surface tension peculiar to-this
experiment. Thus, the bubble pulse is represented in the mathematical model by a trapezoid.
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Figure 3. Probe signal when the probe is dipped into a liquid (cyclohexane).
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In another experiment the probe was submerged with the axis of the tube parallel to the
liquid surface. These experiments indicated that the volume associated with the needle
probe is almost equal to the volume of a cylinder with diameter dy of the probe tube and
height /; of the probe needle.

Finally, the simple shape of the probe allows considerable miniaturization as is shown in
figure 4. Since the volume associated with such a miniaturized probe is only about 2.5 mm?3,
it is capable of detecting even the smallest bubbles occurring in gas fluidized beds.

mm

Figure 4. Miniaturized probes (left: single probe, right: doubk probe for measuring bubble rise velocities).
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3. INTERPRETATION OF THE PROBE SIGNAL

The output signal U(t) of the probe contains information on the bubble phase, and on
the local porosity variations of the dense phase as indicated in the example of figure 5.
In the present investigations only the information about the bubble phase is sought.

It is impossible to process directly the probe signal for determination of the mean duration
of the bubble pulses and other information. Instead, the signals due to the bubble pulses
and those due to the variations of porosity of the dense phase must first be separated. This
discrimination must be based on objective criteria, such that information is neither lost
nor distorted.

Since it is expected that the bubble puises differ significantly in their heights from the
amplitudes of the porosity variation, it seems reasonable to attempt a separation of the
two parts of the signal by a simple limiting technique. This limiting may be effected by the
amplitude discriminator circuit represented in figure 6. Only that part of the signal U(z)
that lies below an adjustable reference value U, is transmitted undistorted, while for other
parts of U(t) the signal is blocked and the output is constant Uj,. An additional circuit
produces a signal more suited for further automatic processing U”(t) in the form of rec-
tangular pulses of constant heights, The duration of such a rectangular pulse is identically
t, for which the discriminator circuit detects the corresponding pulse.

An experiment was conducted to demonstrate that the pulses obtained from the bubbles
differ from the ones obtained from the temporal variation of dense phase porosity. The
mean number of pulses per unit time x of the signal U”() was obtained by means of an
electronic counter, for different levels of the reference voltage U, . As may be seen in figure 7,
the number of pulses rapidly increases as U, rises from an initial value U,. The rate of
increase then diminishes and the pulse count reaches a stationary value k at Uy. Beyond
a value Uy the pulse count again rises rapidly due to the discriminator circuit, allowing the
passage of peaks due to porosity fluctuations in the dense phase. The distribution of
the bubble pulse heights therefore exhibits at the value Uy a limit which is clearly differ-
entiable from above Up,. Thus when Uy, is set at a value between Uy and Uy, the output
U(z) of the discriminator circuit contains all bubble pulses but no components due to the
porosity fluctuations. :

The reference level to effect a satisfactory separation may be estimated from a plot of
versus Up. For a large number of experiments a more expeditious procedure is desirable.

u)
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Figure 5. Output of the reactance converter when the probe is placed into a freely bubbling bed.
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Figure 6. Processing of the probe signal.

Due to the stochastic nature of the signal U(t) the determination of the reference level U,
is impossible by merely considering individual signal elements. It is to be expected that such
a determination may be possible using a statistical description of the signal such as the
probability distribution of the signal amplitudes. However, in order to determine U,
given a measured amplitude distribution of the probe signal U(¢), one requires information
on the composition of the signal. Therefore, amplitude distributions are predicted for both

parts of the signal on the basis of appropriate mathematical models. By superposition, the
distribution for the complete signal is determined.
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Figure 7. Variation of the mean number of pulses per unit time in the signal U*(f) with the reference voltage U,
of the discriminator circuit (copper powder of mean particle size of 67 um fluidized by air, gas velocity 8.4 cm/sec,
probe located in the center of 2 10-cm dia. bed, 8 cm above the distributor).
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Let U, denote that portion of the signal arising from dense phase porosity fluctuations.
U, varies stochastically within the bounds U, ,;, and U, .., about an expected value U, .
The component of U(t) arising from the presence of bubbles is denoted U,. The bubble
pulses exhibit heights z such that z,,, < z < z_,,, and pulse durations t, ranging from
Lymin 10 lymax- 1he corresponding probability density distributions are g(z) and wit,),
respectively. The mean duration of a bubble pulse is denoted by ¢,
tbmax
ty = tow(t,) dt,. 3
From the signal U(t), the functions U,(t) and U,(t) are constructed by the following
definitions: For a probe immersed in a bubble at time ¢

U, = Ux; (Ul = Zma) S Us(t) < Ul'
For a probe not immersed in a bubble at ¢
Uimin S U S Uy and Uy(t) =T,

The decomposition of the signal U(t) as defined in this way is depicted in figure 8.
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Figure 8. Decomposition of the probe signal into its components U; due to bubbles and U, due to dense phase
porosity fluctuations.
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Let w(U)dU be the probability that at an arbitrary time ¢ the signal U(z) has a value in
the interval U to U + dU, with corresponding definitions for the distributions of w,(U,)
and w,(U,). ’

In order to compute the probability distribution of the amplitude of the signal U,(t),
the shape of the bubble pulse is approximated by trapezoid with a rise time ¢,,

t, = g/ 4 (4]

where 7, is the mean rise velocity of the bubbles at the point of the probe.

~ The stochastic process of bubble pulse appearance is described by a Poisson-process,
i.e. the probability P(n, 6) that n bubbles strike the probe in the time interval of duration
6 is given for stationary bed operation by the Poisson distribution (Gnedenko 1968):

k@
Pyn,6) = (—n'—)" e ", (5]

Since in the present case only time intervals 8 = O(z,) are of interest, and since from experi-
ments it is known that bubble pulses occur infrequently namely k6 « 1 for 6 < t, sy, [5]
can be simplified as follows:

¥} — k6 n=20
Pyn,0) = < k6 n=1 for k8 < kt, ., « 1 (6]
0  n=2

where k is the number of bubbles striking the probe per unit time. Equation [6] adequately
describes the stochastic process of the appearance of bubble pulses. Starting from the
definition of the function w,(U,), using the rules for manipulating compound probabilities,
conditional probabilities and unconditional probabilities {see for example Lee 1960) it is
possible to compute the probability density distribution w,(U,) of the amplitude of the
signal U,(2).

The probability that U,(¢) has a value U,(t) = U, at time ¢, is identical to the probability
P that at the same time the probe is immersed in a bubble. This probability is

P= k(;b + tr)‘ [7]
One thus arrives at the following expression for the probability density distribution w, (U,):
wy(Uy) = [1 = k(ty + t)IWUy) + k(5 + 16U, — U,) (8]

where 6(U; — U,) is the Dirac delta function and h(U,) is the probability density function
of the component U, associated with the dense phase porosity fluctuations. According to
this superposition rule:

U,y for Uxfe) # U,

ve = {Ul('t)- for Uy(r) = U, 3]
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there results the probability density distribution w(U) of the amplitude of the total signal
U@):

-

0 U < Ul - Zm“
(i, - 1)a(0, = V) + 2kt,f ™Ay, U, -2, SUSU, -z,
0,-v 2
w(U) =4 2kt f ) (z) U, - 23, < U < Uy
[1 — k(F, + t,JA(U) + 2k:,f ", Uiwn <U <D,
ton 2 (10]
[1 - k(Eb + t,)]h(U) . Ul <Ux Ulmax
kO Ulmu < U

where for positive AU

lim w(U; — AU) = [1 = k(i + t)]n(T,) + 2k, fzmi(i)dz
AU—-0

Zmin

lim w(U, + AU) = [1 = ki, + t)J4(T,).

AU=0

In figure 9 an amplitude distribution, measured by means of a Hewlett—Packard 3721A
correlator is shown for the same experimental conditions as those of figure 7. From the
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Figure 9. Measured amplitude probability density distribution of the probe signal (same experimental conditions
ag in figure 7).
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measurements of k(U p) the reference values U, = U, — 2o Un = Uy = 2o U = U in
are used for the amplitude distribution. It is evident that for amplitudes U between U
and Uy,, the density distribution is constant, as predicted by the theoretical analysis. It
is now possible to decide which part of the measured distribution function is to be attributed
to the bubble pulses. This part shaded in figure 9, represents 25.8 per cent of the total area
under the w(U) curve. Theoretically, this fraction of the area should equal the probability
P that at a time ¢ the probe registers 2 bubble. From the measured values of k, t, and
t, there results, for the present case, a value of P = 0.223 which is in good agreement with
the fractional area computed above.

Using an approximate pulse height distribution g(z) derived from the measured x(Up)
curve, it is possible to compute from [10] the amplitude density distribution for U < U, -
The computed and measured distributions w(U) are compared in figure 10. The differences
between the curves are primarily due to discrepancies between the actual and assumed
bubble pulse shape. Whereas the theory assumes trapezoidal pulses, real pulses exhibit a
somewhat smoother variation. Hence the assumption of a trapezoidal form limits the
accuracy of the distribution.

The computation of the amplitude distribution of the probe signal and the comparison
to experiments has confirmed that measurement of the amplitude distribution of the probe
signal U(t) yields an objective criterion for the separation of the signal components. The
measured probability density distribution of the amplitude of the probe signal exhibits a
region where the density distribution is constant at a low value. Setting the reference level
Up in this region the output signal of the discriminator circuit contains the complete set
of bubble pulses. This treatment is admittedly involved, but is necessary for the further
processing of the signal.
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Figure 10. Comparison of measured and computed amplitude probability density distribution (same experimental
conditions as in figure 7).
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4. METHODS FOR MEASURING LOCAL STATE OF FLUIDIZATION

4.1. Mean bubble pulse duration t, and mean number of bubbles detected by the probe per
unit time k

The output signal U'(t) of the discriminator circuit contains, if Uj, is properly set, all
bubbles. Since this signal is unsuitable for triggering the electronic counters, the signal
U"(¢) (cf. figure 6) is used instead to measure the magnitudes of k and t,. The arrangement
is shown in figure 11. The discriminator feeds the signal U”(t) to two counters for a pre-
selected period T. One counter registers the number n of the bubble pulses within the set
period while the other registers the sum of periods t,; corresponding to the bubble pulse
durations. For sufficiently large T,

n

Yty [11,12]

i=1

k=n/T and ¢t =

S|

By means of the trapezoidal model of a bubble pulse and an expected pulse height E[z],
it is possible to compute the mean bubble pulse duration ¢, accounting for the discrimina-

tion level U :
- . U,-U
ty =i, + ¢, [2 (-—‘EE—") - 1]. ' [13]

It is important that the counter registering the sum of the bubble pulse durations process
its input values as rapidly as possibie, i.e. have short dead time. The counter used here,
Grundig UZ 83, had an adequate switching time of 0.1 msec. The measurement of the
mean bubble pulse duration by means of two electronic counters proved to be more accurate
than an alternative method (Werther & Molerus 1971) by which the same information
was obtained from an auto-correlation function of the signal U’(t). This is because the
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Figure 11. Measurement of the mean bubble pulse duration and of the mean number of bubbles striking the probe
per unit time.
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measurement of the auto-correlation function is strongly dependent on the shape of the
bubble pulses (Werther 1972).

4.2. The mean rise velocity V,, of the bubbles at the point of the probe

The basic arrangement for the measurement of individual bubble rise velocities is shown
in figure 12. Two probes, A and B, were mounted one above the other with a vertical
displacement of s. The rising bubble caused a pulse first at the lower then at the higher
probe. From the time of the pulse separation t,, the rise velocity v, is

v, = S/t,. [14]

Rowe (1971) has criticized this velocity measurement, stating that it is difficult to identify
corresponding bubbles in the signals U ,(z) and Ug(t) due to splitting or coalescence of
bubbles between the two probes. To circumvent this difficuity, the probes were separated
by a small distance s (i.e. 3.6 mm) as compared to the mean bubble dimension. Consequently,
the separation time ¢, is short and the probability of bubble coalescence or splitting becomes
negligibly small. :
For such a small displacement s it is difficult to measure individual pulse separations,
because small variations in the shape of the leading and trailing edges of the pulses may
lead to significant errors in the magnitude of ¢,. However, it is debatable whether single
measurements of pulse separations are useful Prior experimental results show that the
instantaneous rise velocity of a bubble depends on a number of random factors:

(1) The rise velocity of an individual bubble is strongly influenced by the proximity and
size of neighbouring bubbles, as shown by Godard & Richardson (1969).

(2) During the period immediately prior to coalescence, bubbles about to coalesce
influence each other’s rise velocity (Rowe 1971; Grace & Harrison 1969; Clift & Grace
1970).

(3) Significant variations in velocity were observed even for single bubbles of the one size

Figure 12. Measurement of the rise velocity of a single bubble.
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rising in an infinite medium. This phenomenon is attributed to wake shedding.(Rowe
& Matsuno 1971).

The fact that the instantaneous rise velocity of a bubble is virtuaily a stochastic quantity
makes the measurement of individual rise velocities pointless. Instead, the local state of
fluidization is better described by the mean rise velocity 7, of the bubbles at the point of
the probe. This is computed from a measurement of the bubble mean rise time, E[z,}:

5, = S/E[t,]. [15]

This bubble mean rise time is measured by means of correlation techniques. These
techniques have already found extensive use in the measurement of velocities (Butterfield,
Bryant & Dowsing 1961; Miller 1961; Mesch, Daucher & Fritsche 1971), e.g. paper slurry
where all elements move at the same velocity and the structure is inherently coherent. The
measurement is effected by two probes 4 and B displaced a distance s in the direction of
motion of the structure. These probes yield the electric signals U’,(t) and Ujg(t) in response
to some attribute of the structure. Since it is assumed that all elements move at the same
velocity, the two signals are identical except for a constant time displacement;

Uglt) = Ut — t,). (16]

Substitution of this relation in the equation defining the cross-correlation function
¢ 45(7) (Schlitt 1960):

. 1
Pap(t) = 1!1:1:: 5T

+T
J. U, @)Ut + 1) dt, [17]
-T
shows that the cross-correlation function ¢ 44(7) is in this case merely an autocorrelation
function ¢ 4 () displaced by the time ¢,;

D4p(T) = Paalt — to). (18]

Since the auto-correlation function exhibits its maximum at 7 = 0 it follows that ¢ (1)
exhibits its maximum at t = ¢,. The position of the maximum of the measured cross-
correlation function hence yields the desired time displacement ¢, from which, for a known
probe displacement s, the velocity of the structure may be deduced.

In the case of the rise velocity of bubbles in a fluidized bed, the pulse separation ¢, is
stochastic, and measurements show that the cross-correlation function is not a time-
displaced auto-correlation function (figure 13). Furthermore, it is doubtful whether the
position of the maximum of the cross-correlation function yieids the desired mean time
displacement E[t,). The position of the maximum was therefore calculated. This calculation
is based on the experimental observation that the time delay t* at which the maximum
occurred was independent of whether the signals U'(t) or U"(t) were cross-correlated
(cf. figure 6). Therefore, the mathematical model uses the signal of simpler shape U"(¢).
The signals U’(t) and Uj(t) consisting of random series of rectangular pulses of stochas-
tically varying duration but of constant height, are cross-correlated according to [17].
The pulse separations t, of the corresponding pulses vary stochastically between the
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Figure 13. Comparison of measured auto-correlation and cross-correlation function.

limits ¢,y and t, ... The computations, given in detail by Werther (1972), show that the
separation time t* where the maximum occurs, depends on the form of the distribution
of the pulse separations g,(t,). Corresponding measurements have shown that the dis-
tributions ¢,(t,) are skewed. In that case it follows that

* -
T = tamed

where the median value ¢, .4 is defined by

tomed
f q.(t,) dt, = 0.5. (19]
tamin

The difference between ¢, ..« and the expected value E[t,] may be neglected, as shown by
the evaluation of distributions g,(t,). Hence, the position of the maximum of the cross-
correlation function of the two probe signals is used to estimate the mean time E[t,] for
the bubbles to rise from probe A4 to probe B. Using this value, the local mean rise velocity
of the bubbles at the position of the probe is determined.

4.3. Description of the local state of fluidization by the parameters E[l), ¢, and Vv,

The three parameters k, t, and 7, do not directly yield a satisfactory description of the
bed. However, they are used in deriving significant characteristics of the local state of
fluidization.

Mean pierced length of bubbles, E{l]. It is assumed that the duration t, of a bubble pulse
and the instantaneous rise velocity of the corresponding bubble are stochastically indepen-
dent. The statistical mean pierced length ! corresponding to a pulse duration ¢, is then

Up max .
1= [ oo do, | 120)

Ubmin

I = E[v,)t, (21]
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where g,(v,) is the number density distribution of the rise velocities at the point of the probe.
Measurements of the q,(t,) distribution have shown that it is possible to approximate the
expected value E[v,] by the mean velocity 7,, determined by means of correlation measure-
ments. Thus

[ =1, [22]
and the expected value E[[] of the pierced lengths is
E[l] = ﬁbfb' [23]

The mean pierced length E[] is a measure for the mean size of bubbles at the point of the
probe, providing bubbles rise randomly. The exact relationship between the distribution
of the pierced lengths and the bubble size distribution will be treated in a separate publica-
tion (Werther 1973). As an example, figure 14 shows the growth of the mean pierced length
with increasing height h above the distributor as measured in a cylindrical fluidized bed
with a diameter of 10 cm. The hydrodynamic interpretation of these measurements as well
as of the experimental results depicted in figures 15 and 16 follow in Part II of this paper.

The local bubble volume fraction, ¢,. A volume element of the fluidized bed at the point
of the probe contains on a time-averaged basis, a fraction ¢, of gas bubbles. This fraction
equals the ratio of the time in which the probe registers bubbles, to the total time for which
measurements have been made T':

&= lim = 3 1 [24]

where n = number of bubbles registered in time T. It follows
eb = kib. [25]

As an example, figure 15 shows the local bubble volume fraction versus the radial distance
from the centre-line of a cylindrical fluidized bed of 10 cm dia. The measurements refer to
a section 8 cm above the distributor.
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Figure 14. Variation of the local mean bubble pierced length with height above the distributor (quartz sand of
mean particle size of 83 uym fluidized by air in a 10-cm dia. bed, probe located in the column axis, gas velocity
9 cmy/sec).
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Figure 15. Variation of the local bubble volume fraction with radial displacement of the probe from the vesse!
center-line (quartz sand of mean particle size of 83 um fluidized by air in a 10-cm dia. bed, probe located 8 cm
above the distributor, gas velocity 9 cm/sec).
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Figure 16. Variation of the local bubbie gas flow with radial displacement of the probe from the vessel center-line
for different heights h above the distributor (quartz sand of mean particle size of 83 um fluidized by air in a 20-cm
dia. bed, gas velocity 9 cm/sec).
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The local bubble gas flow, V,. The mean gas volume flowing through a surface element
dF per unit area and unit time is given by
| lim !
= 1 ————
T—~o TdF,

™s

v, I, dF [26]

1

from which it follows that ¥, = ki,3,. [27]

It is significant that in determining the local bubble gas flow no assumptions have been
made concerning the shape of the bubbles. In figure 16 experimental results are shown of
the local bubble gas flow versus the distance r from the bed centre-line. The height above
the distributor is a parameter. The results indicate the accuracy of the measuring technique
described here.

5. SUMMARY AND CONCLUSIONS

A system for measuring the parameters describing the local state of fluidization is
developed. The system is based on a capacitive probe shaped such as not to disturb the
local state of fluidization. Extensive miniaturizations ensure that even bubbles of only a
few millimeters diameter are detected.

The separation of the component of the probe signal due to bubbles striking the probe
from the component due to random fluctuations of the dense phase porosity is achieved.
This separation is based on the statistical nature of the phenomenon and on the measure-
ment of the probability density distribution of the amplitude of the probe signal After
separating the signal, by means of a discriminator circuit, the mean bubble pulse duration
t, and the mean number k of bubbles striking the probe per unit time are measured using
two electronic counters. The local mean bubble rise velocity 7, is obtained from the cross-
correlation of the signals from two probes arranged one above the other.

From the parameters k, ¢, and D, further characteristics of the local state of fluidization
are derived, in particular, the local mean pierced length of bubbles E[]], the local bubble
volume fraction ,, and the local bubble gas flow, V.

Selected examples of experimental measurements show that the above constitutes a
complete measuring system capable of accurate investigation of fluidized beds of arbitrary
dimensions. In Part II of this paper an investigation of the spatial distribution of bubbles
in fluidized beds of various sizes is carried out using this measuring system.
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Sommaire—On décrit un systéme de mesure des paramétres qui caractérisent I’état local de fluidité
dans des bains de grandeurs arbitraires. Ce systéme est fondé sur une sonde de capacité miniaturisée
de forme teile qu’elle ne dérangera pas I'état local de fluidité. Sur la base d’une analyse statistique
du signal, on mesure la durée moyenne d'impulsion d'une bulle, le nombre de bulles qui font
contact avec la sonde par unité de temps et la vélocité moyenne locale d’élévation de buile. Cette
derniére est mesurée par la technique de corrélation croisée. De ces paramétres on dérive d’autres
caractéristiques de I’état local de fluidité, et en particulier la longueur locale moyenne de builes
éclatées, la fraction de volume de bulle locale et I’écoulement local de la bulle de gaz.

Zusammenfassung—Ein System zur Messung der fiir den lokalen Fluidisationszustand charakteris-
tischen GroBen wird beschrieben. Grundlage des MeBsystems, das fiir FlieBbetten beliebiger
Abmessungen verwendbar ist, ist ein miniaturisierter kapazitiver MeBwertgeber, der so geformt ist,
daB durch seine Anwesenheit der lokale Fluidisationszustand nicht gestért wird. Auf der Grundlage
einer statistischen Analyse des Gebersignals durch Messung der Wahrscheinlichkeitsdichteverteil-
ung der Signalamplituden kénnen die mittlere Anzahl der den Geber pro Zeiteinheit treffenden
Blasen, die mittlers Blasenimpuisdauer und die lokale mittlere Blasenaufstiegsgeschwindigkeit
gemessen werden, wobei die letztere GroBe mit Hilfe der Kreuzkorrelationsmeftechnik bestimmt
wird. Aus diesen MeBgréBen werden weitere fiir den lokalen Fluidisationszustand charakteristische
GroBen abgeleitet, wie die lokale mittlere BlasendurchstoBlinge, der lokale Blasenvolumenanteil
und der lokale, in Form von Blasen transportierte Gasstrom.

Pesrome—OIMHCHIBAETCA CHCTEMA H3IMEPEHMs] MapaMeTPOB XapaKTEPHIYIOWIHX MECTHOE
COCTOSIHHE TICEBIOOXMXEHHS CIOEB BBIGOPOMHBIX pa3MepoB. DTa CHCTEMa OCHOBaHa Ha
€MKOCTHOM 30HI€ YMEHbIUEHHbIX raGapuTos Takoil hopMbl, KOTOpas He Hapyiuana Gbl Mec-
THOTO COCTOAHMSA dMONIH3amMd., Ha OCHOBAHMM CTATHCTUMECKOTO aHANU3a CHTHAIA U3Mep-
AIOTCH: CPEOHAA NPOJOKHTEIBHOCTD HMITYJIECA HY3bIPBKA, KOJHYECTBO [1y35IPLKOB yAapsIO-
muxcsd 06 30HI HA €AHMHWLY BPEMEHH M CPeNHSA MECTHAA CKOPOCTDH TMOSBIEHHA My3bIPbKa.
[MocnenHee H3MepAETCs METONOM B3auMHOR koppenaumy. [To 3TUM mapameTpaM noJyvatoT
106aBOYHbIE XapAaKTEPHCTHKA MECTHOTO COCTOAHHMA (IIOMDM3ALMM, B YACTHOCTH MECTHYIO
CPENHIO JUTHHY NEPECEYCHHA MYy3biPbKOB, MECTHLIR OTHOCHTE/IbHbIA 0GHhEM Iy3BIPBHKOB H
MECTHOE TeYeHMe HY3LIPbKOB rasa.



